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An orbital two-body system - two point masses connected by an ideally flexible massless inextensible thread - is considered. 
Equations are obtained for the plane relative motion of the system on the taut thread and a condition for such motion to exist 
is derived, on the assumption that the centre of mass of the system describes a Keplerian elliptic orbit. The torques of gravitational 
forces, aerodynamic pressure, aerodynamic friction and the aerogradient effect are taken into account. The aerogradient effect 
may lead to strong spinup of the satellite, while the orbit ellipticity may cause chaotization of the motion. Ca 2001 Elsevier Science 
Ltd. All rights reserved. 

1. THE EQUATIONS OF MOTION AND 
THE CONNECTEDNESS CONDITION 

Consider an orbital two-body system - two point masses ml and m2 connected by an ideally flexible 
massless inextensible thread, acted upon by gravitational and aerodynamic forces applied to the points 
ml and m2. It is assumed that the centre of mass of the system moves along a Keplerian elliptic orbit. 
It has been shown [l]$ that suitable control forces applied to the points ml and m2 will fully compensate 
for the deviations of the orbit of the centre of mass from a Keplerian orbit, without at the same time 
generating torques in the relative motion of the system. If such control forces are not applied, it is 
assumed that the deviation of the orbit from a Keplerian one may be neglected. 

We will introduce the following notation (Fig. 1): 0 is the centre of attraction (i.e. the Earth’s centre), 
C is the centre of mass of the dumb-bell, which is describing a Keplerian elliptic orbit, Cm is an orbital 
frame of reference, where r is the unit vector in the direction of the instantaneous radius vector of the 
orbit, 7 is the unit vector in the transverse direction, pointing in the direction of the orbital motion, R 
is the radius vector of the dumb-bell’s centre of mass, 1 R 1 = R is the instantaneous distance from the 
attracting centre 0 to the dumb-bell’s centre of mass C, RIT is the minimum (perigee) value of that 
distance, v is the true anomaly (the angle between the perigee and the instantaneous radius vectors of 
the centre of mass C), V is the instantaneous velocity vector of the centre of mass C, ~?l~ are point masses 
at the ends of the dumb-bell, ri are vectors from the centre of mass C to the ends of the dumb-bell, 
Zi=IriI=Z(111-_i)/nt,m=ml+m2,I = I1 + I2 is the length of the dumb-bell, I R I = Ri is the distance 
from the attracting centre 0 to the mass mi, Ri = R + q, C4 is the absolute angular velocity of the dumb- 
bell, v = dvldt is the instantaneous angular velocity of rotation of the dumb-bell’s centre of mass, (Y = 
dcx/& where 01 is the angle between the transversal T and the direction of r2, measured in the direction 
of orbital motion and vi = R X ri, Vi = V +vi; throughout this paper, i = 1,2. 

We know from the theory of Keplerian orbits that 

V, =fjesinv. V, =~(l+eco~v). V=@ 

A=4+,2+2ecosv, R= &diG 
1 +ecosv’ 

p= R,(l+e), ir=x=- 
R2 

(l-1) 

tPrikL Mat. Mekh. Vol. 64, No. 5, pp. 721-731,200O. 
*See also: BELETSKII, V V, VORONTSOVA, V. A., KOF, L. M. and PANKOVA, D. V., The effect of aerodynamics on the 

relative motion of an orbital two-body system, Part I. Regular motions Preprint No. 38. M. V Keldysh Inst. Prikl. Mat., Ross. 
Akad. Nauk. Moscow, 1996. 
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Fig. 1 

where e is the eccentricity, p is the focal parameter of the orbit, CL is the gravitational constant, V, 
and VT are the radial and transversal components of the velocity of the centre of mass C, and Vis the 
magnitude of the velocity. We take the aerodynamic force acting on the point of mass mi to be 

q =-CiO(Ri)~V,, I$ =IVi I 

The components of the vectors Vi relative to the r and T axes are given by the formulae 

y, = $ E esinv-(-l)ifiRcosq Vti = 
$ 

E(l+eCOSV)-(-l)il~~Si~CX 

P P 

Ci are coefficients having the dimension of area, which are constant in this formulation of the problem 
(it may be assumed, for example, that Ci = T&, if one is considering a system of two spheres of 
radii R and the interaction of the molecules of the flow with the spheres is absolutely inelastic [2]) and 
o(Ri) is the density of the atmosphere at a distance Ri from the attracting centre, taken to be 

O(Ri)=p, exp(-v), Ri = [R* + 1; - (-1)‘2RZ, sina]x 

where His the so-called atmosphere scale height, which is taken to be constant. The parameter pn has 
the meaning of the density of the atmosphere at the perigee of the orbit. We will also need the value 
of the density of the atmosphere at the dumb-bell’s centre of mass C, that is, at a distance R from the 
attracting centre. Using relations (l.l), we obtain 

The gravitational forces have the form 

It is natural to assume that 

that is, the dumb-bell is sufficiently small compared with the orbital radius, and the linear velocity of 
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rotation of the dumb-bell is small compared with the orbital velocity. It will therefore suffice to consider 
the acting forces accurate up to the leading terms of their expansions in terms of the parameters Zi. As 
we know, in the expansion of expressions for gravitational forces it is sufficient to retain terms of order 
up to and including two [3]. For aerodynamic forces it is sufficient to use expansions up to first-order 
terms inclusive. 

Now, considering relative motion in the orbital reference frame Crr and utilizing the Lagrange 
equation of the first kind [3], we obtain equations of coupled motion for the dumb-bell and conditions 
for the connection to be maintained 

d*a 
- - 2Pesin V 
dv2 

- 3psin acosa - ap’o,A’sin 8 - 

-kp40,Az sin Gsina + bp*o,A( I + sin* 6) 

+ bp20.A 

where 

I 
P’ 

I +ecosv 

sin6= -!-[(l+ecosv)sina+esinvcosa] 

toss = +[(l+ecosv)cosa -esinvsina] 

The constant dimensionless parameters have the following meanings 

a=w 2 C2mi -+2, k,bp b=p,P 
C2mf + C,m,2 

bm2 H’ q~12(ml +m,) 

(l-2) 

(1.3) 

(1.4) 

The focal parameterp is related to the eccentricity e of the orbit and to the magnitude R, of the 
radius vector of the perigee of the orbit by formula (1.1). Explicit formulae for a*(u) and A(u) were 
presented above. 

2. DISCUSSION OF THE EQUATION OF MOTION 
AND THE CONNECTEDNESS CONDITION 

Research into the influence of aerodynamic effects on the spin and attitude of artificial satellites began 
in the 1950s and are still going on. This research is reflected, for example, in the monographs [2-51 and 
in hundreds of journal publications. New interest in this field arose in relation to projects of large-scale 
tethered systems [I], where the aerogradient effect, for example, is significant [2], as is the possibility 
of chaotization of the motion due to impact arrivals at the connection [6].t Embedded in Eq. (1.2) is 
a different mechanism of possible chaotization - due to the motion of the system in an elliptic orbit, 
which causes the non-linear equation (1.2) to be non-autonomous. 

Equation (1.2) and the connectedness condition (1.3) for the motion allow for the ellipticity of the 
orbit (the eccentricity of the orbit e # 0), the gravity-gradient effect for the dumb-bell (the third term 
in Eq. (1.2)), aerodynamic pressure effects (a # 0), aerodynamic friction (b + 0) and the aerogradient 
effect (k f 0). Note that if the masses llzl and m2 are connected by an absolutely rigid rod (a rigid dumb- 
bell), the connectedness condition is not taken into consideration, as the motion is always connected, 
by definition, and is described by Eq. (1.2) alone. 

tSee also BELE’ISKII, V. V. and PANKOVA, D. V. The effect of aerodynamics on the relative motion of an orbital two-body 
system, Part 2. Chaotic and regular motions. Preprint No. 40. M. V. Keldysh, Inst. Prikl. Mat, Ross. Akad. Nauk, Moscow, 1996. 
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Equation (1.2) and condition (1.3) in this general form are apparently being published here for the 
iirst time. Various special cases of (1.2) and (1.3) have been published and investigated. 

We present a brief survey of the relevant publications. 

Circular orbit: e = 0. Equation (1.2) was considered in [4] only taking into account the effect of the 
torque due to aerodynamic pressure (a + 0) together with the torque due to the gravitational gradient, 
for which the following general formula for the gravity-gradient coefficient was assumed 

n2 = 3(A-C)IB (2.1) 

where A, B and C are the principal central moments of inertia of the satellite, considered as an arbitrary 
rigid body. In the case of a dumb-bell satellite, C = 0, A = B and r? = 3, as indeed assumed in 
Eq. (1.2). 

The problem of the motion of an orbital two-body system was first considered in [7], where only the 
gravitational torque was taken into account, ignoring aerodynamic effects. In other words, Eq. (1.2) 
and condition (1.3) are derived and investigated in [7] for e = 0, u = b = k = 0. The problem of the 
dynamics of orbital two-body systems as systems with a unilateral constraint was first formulated and 
investigated in [7, 81. These investigations are also reflected in the monographs [l, 31. The effect of 
aerodynamic pressure in this problem was first considered in [9]. The equation of motion and 
connectedness condition obtained in [9] follow from (1.2) and (1.3) with e = 0, b = k = 0, a # 0 (see 
also the first footnote). 

The complete equation of motion and the connectedness condition for a circular orbit (e = 0, 
a # 0, k # 0, b f 0) were fist derived in the study cited in the first footnote and, in an improved version, 
in [lo]. This equation and condition are identical with (1.2) and (1.3) when e = 0. 

EZliptic orbit. For an elliptic orbit (e # 0) in the purely gravitational case (all the aerodynamic 
parameters (a, b, k) in Eq. (1.2) vanish), Eq. (1.2) was first published for the general gravitational 
parameter (2.1) in [ll]; since then several dozen studies have been devoted to investigations of the 
equation. 

Equation (1.2) for the motion of a dumb-bell in the purely gravitational case was first accompanied 
in [12] by the condition (1.3) of coupled motion for that case (a = b = k =O). The condition from [12], 
of course, considered for a circular orbit (e = 0), is identical with the connectedness condition obtained 
in [7]. Equation (1.2) has been considered, ignoring the dissipative and aerogradient terms ignored 
(b = k = 0), but with the general form (2.1) of the gravitational parameter and an arbitrary value of 
the aerodynamic pressure parameter (a f 0); the equation has been analysed for the existence and 
stability of three-parameter (e, n2, a) 2T-periodic motions of a satellite.?$ 

3. ANALYSIS OF THE PARAMETERS OF THE EQUATION OF MOTION 

The qualitative and quantitative characteristics of the solutions of Eq. (1.2) depend on the absolute 
values of the dimensionless parameters of the aerodynamic pressure a, the aerodynamic gradient k, 
the aerodynamic friction b and also on the value of the quotients of these parameters to each other 
and to the number 3, which characterizes the effect of the gravitational gradient on a dumb-bell satellite. 

The effect of the ellipticity of the orbit is determined by the value of its eccentricity e and very 
significantly by the value of the parameter x = R&/H which occurs in the aerodynamic terms of 
Eq. (1.2). The parameter x is two orders of magnitude greater than the orbit eccentricity e. This means 
that even at very small orbit eccentricities the aerodynamic terms may exert a significant influence on 
the motion, including its chaotization. 

Let us estimate the relative influence of the aerodynamic and gravitational parameters. It is clear 
from relations (1.4) and (1.1) that the ratio 

b H -= 
k R,(I+e) (3-l) 

TMEL’NIK, N. V Periodic oscillations of an artificial satellite in a circular orbit taking the effect of atmospheric drag into 
account. Preprint No. 97. M. V Keldysh, Inst. Prikl. Mat., Ross. Akad. Nauk, Moscow, 1976. 

SMEL.‘NIK, N. c! 2qeriodic oscillations of an artificial satellite in the plane of an elliptical orbit in the presence of atmospheric 
drag. Preprint No. 119. M. V Keldysh, Inst. Prikl. Mat., Ross. Akad. Nauk, Moscow, 1976. 
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depends neither on the size of the dumb-bell satellite nor on its dynamic characteristics, but only on the 
parameters of the orbit and the atmosphere scale height H. Since R, - 6000 km and H - 30-60 km, it 
follows that b/k - 0.005XLO1, that is, the aerodynamic dissipation coefficient is two orders of magnitude 
less than the aerogradient coefficient. Thus, the aerogradient effect is more significant than the effect of 
aerodynamic friction. Of course, under conditions of free-molecular flow, the concept of aerogradient 
is rather artificial for a satellite of small size. But for orbital tethered systems with a fairly long tether, 
the aerodynamic gradient (the density gradient of the atmosphere) is a wholly real phenomenon and, as 
is obvious from (3.1), it exceeds the aerodynamic friction effect by two orders of magnitude. 

If C#n, % Cl/ml, the relative influence of the aerodynamic factors is estimated by the relations 

k 1 b 1 -_- -_ 
a H’ a R,(l+e) 

and, depending on the tether length, we have the following numerical values 

1, km 0.06 0.6 6 60 
kla 0.001 0.01 0.1 1 
bla lo-5 lOA 1o-3 1o-2 

It is assumed (without loss of generality) that in (1.2)-(1.4) we always have a a 0, that is 

cz-c,>() 
m2 ml 

(3.2) 

This corresponds to a simply defined enumeration of the points mi. Namely: the index i = 2 is assigned 
to the point whose characteristics m2, C2 satisfy condition (3.2). By virtue of this condition, the parameter 
a may take values from zero (when the numbers Cdm, and Cl/m1 are identical, which happens, e.g. in 
a dumb-bell with parameters ml = llz2 and Cr = C2) to very large numbers (when m2 and C2 correspond 
to an inflated balloon - an aerodynamic stabilizer of small mass and large size). 

Note that if the altitude of the centre of mass of the system above the Earth’s surface is 
h- 20&225 km, then ~$2, - 3 x 10e2 gIcm2, so that values k - a - 1 are attained when 

Glm2 - 30 cm2/g (an inflated balloon of large size P - H - 60 km). For a satellite-probe with 
Cz/m2 - 10e2 cm2/g and tether length - 1 km, estimates give a - 10s2, k - 1r3 and the relative motion 
of the system is determined mainly by the gravity-gradient torque, while aerodynamic effects play the 
role of a small perturbing factor. 

4. DYNAMICS OF A DUMB-BELL SATELLITE IN A CIRCULAR ORBIT 

In a circular orbit, e = 0 and relations (1.2) and (1.3) become [lo] 

d2a 
--3sinacosa-asina-ksina* +b(l+sin*a 
dv2 

2 

+3sin2a-I-acosa-ksinacosa+b 

When there is no dissipation (b = 0), Eq. (4.1) has a first integral 

I da* 3. 2 -- 
( ) 

--ma +acosa-:(a-+sin*a)=h 
2dv 2 

(4.1) 

(4.2) 

(4.3) 

which determines the phase portrait of the problem (h is an integration constant), from which, using 
condition (4.2) with the inequality sign reversed, the zones of leaving the constraint are eliminated. 

We will describe the basic properties of relations (4.1)-(4.3) following results previously obtained 
[lo] (which were reproduced in [13]). 

The stationary points of Eq. (4.1) are determined by the solutions in [0,21r) of the equation 

sina(3cosa+ksina+a)=O (4.4) 
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This equation generally has four roots in the half-closed interval [0,2~r) 

a,=O, a2=x, a3=a+, a4=a_ 

where the roots CY+ and CX_ are defined by 

-3a rf: kw 
ma* = 

9+k2 ’ 
w=&GKs 

Hence it follows that if 

(4.5) 

a2 Z= 9+k2 (4.7) 

then Eq. (4.1) has only two stationary points. If the inequality opposite to (4.7) holds, there are four 
stationary points. The case w = 0 corresponds to the presence of multiple roots. 

The stability (instability) of the stationary points oj 0’ = 1,2,3,4) depends on the sign of the coefficient 
Aj in the equation in variation 6o obtained by varying the initial equation (4.1) about the stationary 
points 

d2(W -+Aj6a=O, j = 1,2,3,4 
dv* 

The index of the coefficient Aj corresponds to the index of the solution oj of Eq. (4.4). It turned out 
that 

A, =-(3+a), A2=a-3 

4 =&(ka+W, A4 =&(9-a’) 

Positive values OfAj correspond to a stable stationary point (a centre) and negative values to an unstable 
point (a saddle). 

It follows from (4.5), (4.6) and (4.8) that the following possibilities exist (Fig. 2). 
1. a2 > 9 + k2. There are only two stationary points: 0~~ = 0 - a saddle, and “2 = T -a centre. In 

physical terms, this corresponds to the strong action of an aerodynamic stabilizer and a stable position 
of the dumb-bell alon 

2. 9<a2<9+ 2 
the tangent to the orbit (the stabilizer is behind the dumb-bell’s centre of mass). 

, There are four stationary points (Y~ = 0 - a saddle, CY~ = T - a saddle, a3 = OL+ 
- a centre and o4 = IX_ - a centre. 

The separatrices emerge from the saddle and are constructed according to integral (4.3). In case 1 
the infinite “whisker” of the separatrix winds spirally around the phase cylinder in the half-space 
daldv < 0, enters the point 01 = 0, doJdv = 0, and then forms a closed loop around the centre 
a = T, dclldv = 0, enters the saddle from the half-space dctldv > 0 and emerges from the saddle, winding 
around the phase cylinder in an infinite spiral “whisker” in the half-space dorldv > 0. At the same time, 
dafdv 4 +P 

All the phase trajectories inside the closed loop of the separatrix are closed and define periodic 
oscillations about a stable relative equilibrium point. The presence of the infinite “whiskers” of the 
separatrix means that, on all other trajectories (not situated within the separatrix loop), the angular 
velocity increases without limit (the aerodynamic spinup effect). We recall that aerodynamic friction 
is being neglected in this treatment. When friction is present, the phase trajectories either contract to 
a relative equilibrium (somewhat displaced because of the dissipation coefficient) or tend to a limit 
cycle of the second kind [14] surrounding the phase cylinder. The mean value of the dimensionless 
absolute angular velocity w of the dumb-bell in the cycle is given approximately by the formula 

,,lLL!k 
3b-3 H 

where R, is the radius of the circular orbit of the mass centre of the dumb-bell and His the atmosphere 
scale height. Estimates give w = 30, that is, the dumb-bell rotates 30 times more rapidly than it moves 
in its orbit. This happens when the dimensional value of the angular velocity of rotation of the dumb- 
bell is op - 20, which is large but finite. 
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-5 - 
0 n 2n 

a 

il II= l;k= 1.1 (4) a = 3.5; k = 2.65 (2) 
5 

-5 
0 n 2n 

a a 

6 

-6 
0 a 2n 

a a 

Fig. 2 

We recall that if a phase trajectory happens to enter the zone of leaving the constraint, this means 
that further motion of the couple is not described by Eq. (4.1) of coupled motion. 

In cases 2 and 3 there are two separatrices on the phase cylinder. One emerges from the saddle 
a = 0 and the other from the saddle a = P (if a < 3) or from the saddle 01 = a_ (if a > 3). 

The phase portrait depends, qualitatively speaking, on the form of the second separatrix. Depending 
on the values of the parameters a and k, it may be bounded (having the form of a “recumbent figure 
of eight”), or, like the first separatrix, it may have unbounded “whiskers”. These two subcases are 
separated by the singular case of a single separatrix passing through all saddle points. This happens if 
the values of the parameters a and k lie on the curve 

k = Q) = 
4alx, a<3 
f(a), 

a>3 

wheref(a) is defined parametrically by the formulae 



698 V. V. Beletskii and M. L. Pivovarov 

k(P) = 2x1 - cosp)*, a(P)= Z(sinp- bcosp) 

‘= j3-sinp+siTip(cosj3- I) 

(4.9) 

The parameter l3 varies in the range from j3 = T (when k = 12/1r, a = 3) to l3 = PO, where p,-, = 123” 
is the solution of the equation obtained by equating the expression for 2 to zero. At p = &-, we have 
k + TV, a + w Note that when a 3 3 formulae (4.9) lead, with good accuracy, to the formula k = 4th 
over a fairly large range of values of a and k. 

The (a, k) parameter plane is divided by the curve k = I&?$ a = 3, k = F(u) into five domains 
(the upper left part of Fig. 2) of qualitatively distinct phase portraits. Examples of these portraits are 
shown in Fig. 2, numbered from 1 to 5 (in the neighbourhoods of the centres of Figs 2(2) and 2(3) are 
small loops of separatrices). The zones of leaving the constraints, that is, corresponding to the inequality 
opposite to (4.2), are shown hatched. 

There may be two zones of leaving the constraint (in the neighbourhood of a = 0 and a = IT) or one 
(in the neighbourhood of cx = 0 only). In the (a, k) parameter plane the domain of existence of one 
zone of leaving the constraint is separated from the existence domain of two zones by a curve defined 
parametrically by the equations 

u=_2-cos2a 
, k=- 

sina(2+3cos2a) 

cos3 a cos3 a 
(4.10) 

The quantities a and k are defined (and positive) as the parameter a decreases from a = T to a = IT/~ 
when a = Twehavea = 1, k = 0; as a + ~$2 we have a + CQ, k + w. The curve (4.10) is represented 
in Fig. 2 by a thin line. 

The above investigation has enabled us, in particular, to observe the following outcomes of the 
aerogradient effect (Fig. 2). 

1. An orbital tethered system may spin up to a fairly high angular velocity (unlimited when there is 
no dissipation). 

2. A stable “lower” position ( a - IT/~) of a probe is possible, but the stability domain is reduced by 
the aerogradient effect. 

3. The stability domain of the “upper” position ( a -31r/2) of a probe is enlarged by the aerogradient 
effect. 

5. REGULARITY AND CHAOS IN THE MOTION OF A DUMB-BELL 
SATELLITE IN AN ELLIPTIC ORBIT 

The principal qualitative effect in the rotational motion of a satellite in an elliptic orbit is the possibility 
of chaotization of the motion [15-181.-t 

The atmosphere particularly strongly affects the onset of chaotization because of the exponential 
variation of its density along an elliptic orbit. Even relatively small eccentricities imply strong 
chaotization. 

In Fig. 3 we show phase portraits of the solutions for Eq. (1.2) in the a, &plane, for the case in which 
the gravitational torques and forces of aerodynamic pressure are effective (that is, it is assumed in (1.2) 
that a f 0, e # 0, but b = k = 0). The phase portraits were constructed by numerical implementation 
of the method of point mappings over one revolution in the orbit. Corresponding to chaotic motion 
are the domains in these figures continuously filled with points; regular (conditionally periodic) 
oscillations and rotations of the satellite are represented by solid curves, and periodic motions by centres 
of islands of regular motions. In view of the symmetry of the phase portraits about the ordinate axis, 
all but two are represented by their halves corresponding to the interval a[+, 01. 

The upper part shows phase portraits for an almost circular orbit (e = 10m3) for different values of 
the aerodynamic parameter a. For a small value of the parameter (a = 0.05) the thin chaotic layers 
seen in Fig. 3 form in the neighbourhood of each of the two separatrices of the phase portrait for a 
circular orbit. The centres of the islands correspond to stable periodic oscillations about the radial 

tSee also BELJZSKII, V X. Regular and chaotic motions in the problem of the attitude control of an artificial satellite. Preprint 
No. 53. M. V. Keldysh, Inst. Prikl. Mat. Akad. Nauk SSSR, Moscow, 1990. 



Effect of the atmosphere on the attitude motion of a dumb-bell-shaped artificial satellite 699 

& e=O.ool 

-It 
a =Z.OS 

0 a 0 
a=l 

a= 1.3 
a 

--x a 0 -9t a 0 
a = 2.5 a= 5 

e = 0.01 

-5 -12 
-lI 0 -n 0 x 

a=3 a a=30 
a 

Fig. 3 

direction (toward the Earth or away from the Earth). The small arcs with maxima at a = -1 are very 
thin islets corresponding to oscillations about a fixed direction in space, collinear with the minor axis 
of the ellipse. When a = 1 the chaotic layers generated by each of the two separatrices are clearly visible. 
When a = 2.5 the inner chaotic layer becomes a chaotic sea (in which one observes an archipelago of 
weakly stable oscillations about a = 0). A relatively high value for the aerodynamic parameter, a = 5, 
gives a domain of aerodynamic stabilization. 

Thus, a very low elliptic@ of the orbit (e - 10p3) gives a relatively satisfactory picture: for example, 
the small oscillations about the radial direction remain small and regular at relatively low values of the 
aerodynamic parameter, the regularity zone remains fairly large, and so on. 

This “satisfactory” picture rapidly disappears as the eccentricity is increased (e = 0.0055, a = 1.3). 
The two chaotic layers have almost coalesced into a uniform sea, forming only a thin “atoll” of regularity 
between the two chaotic layers; the island of regularity within the sea has become substantially smaller. 
When e = 0.01 the figure illustrates the evolution of the phase portrait as a increases (a = 1 and 
a = 30). It is interesting that very large values of u regularize the phase pattern. However, at moderate 
values a - l-3 the motion is strongly chaotic. 

Generally speaking, chaotization increases as e increases, and when a - 1 a continuous sea of chaotic 
trajectories forms even when e - 0.1. 

We wish to thank V L. Vorontsova and A. A. Savchenko for verifying some of the results presented 
in this paper. 
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